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I. INTRODUCTION

In recent years there has been considerable study of alge-

braic systems in which there is a relation of simple or partial

ordering which is closely related to the algebraic operations of the

system. Examples of such systems are partially ordered groups and

semigroups, ordered fields and rings, vector lattices, and partially

ordered linear spaces. It has been usual in studying such systems to

assume a very strict connection between the operations and the or-

dering, namely that one or all of the operations should preserve the

order relation. In a recent paper Frink (1) proposed a definition

of an ideal in a partially ordered set and suggested the possibility

of generalizing an ordered algebraic system by requiring the alge-

braic operations to preserve ideals (determined by the order relation),

rather than the order relation itself. Butson (2) obtained a struc-

ture theorem for simply ordered ideal preserving groups--the suggested

generalization of simply ordered groups. This dissertation is con-

cerned with partially ordered ideal preserving groups. The principal

results show how a general partially ordered ideal preserving group

may be decomposed into a partially ordered group and a trivial par-

tially ordered ideal preserving group. Consequently, many of the re-

sults concerning partially ordered groups are easily extended to

partially ordered ideal preserving groups.



The multiplicative group of real numbers ordered according

to magnitude is a significant example of a system which is a partially

ordered ideal preserving group (actually a simply ordered ideal pre-

serving group) but is not a partially ordered group. This system

contains a maximal partially ordered subgroup--namely the positive

real numbers ordered as above. Orderwise, the set of negative real

numbers can be considered as the dual of the set of positive real

numbers so that the structure of this particular partially ordered

ideal preserving group as an ordered system is completely determined

by the maximal partially ordered subgroup. Actually any lattice

ordered ideal preserving group is the ordinal sum of a maximal lattice

ordered subgroup and its dual. However, the structure of a general

partially ordered ideal preserving group is more complicated.



II. PRELIMINARY CONCEPTS

The basic concepts of group theory may be found in (3) and

those of partially ordered systems in (4). Some of the less widely-

knovm concepts are presented in this section.

Let P be a po-set (partially ordered set). If F is a non-

void subset of P, F* will denote the set (x€? / x> f for every

f€F} and F* the set {"xCP / X < f for every f € f} . The sets

(F ) and (F ) will be denoted by F * and F* , respectively. It

can be shown that FCZF**, FCF''*, (F**)* = F*, and (F**)"" = F*.

Definition 2.1 ; P is up-directed if and only if F* ^ (? for

every finite subset F of P. It is down-directed if and only if

? i ^ for every finite subset F of P.

Definition 2.2: A subset J of P is an order ideal if and

only if F f ^ and F ^CJ for every finite subset F of J. A sub-

set J of P is a dual order ideal if and only if ?""
i ^ and F**Cr J

for every finite subset F of J.

The above definition generalizes the concept of a lattice

ideal. It differs from the definition suggested by Frink (1) for

an ideal in a po-set in the requirement that F* be non-void.

In the remainder of this thesis order ideals and dual order

Ideals will be referred to more briefly as ideals and dual ideals,

respectively. No ambiguity will result since algebraic ideals will

not be considered.



The following properties of P are immediate consequences

of Definition 2.2.

2,3 ; If J is an order ideal of P, x* C J for every x<J, and

dually.

2.4 : F* is an ideal for every non-void subset F of P, and dually.

If a is a minimal element of P, a
'*' = {a\ so that the set

{a} satisfies the conditions of Definition 2.2 for an ideal. Con-

versely, if {a} is an ideal, by (2.3) it is a minimal element of P.

The dual statements are also true.

2.5 ; A set {aj of P is an ideal if and only if a is minimal,

and dually.

Definition 2.6 ; An element of P which is not comparable to

any other element of P is called an isolated element .

Definition 2.7 ; An ideal J of P is called a principal ideal

if J = x"^ for some x€P. A dual ideal J of P is called a dual prin-

cipal ideal if J = x for some x€P.

Definition 2.8 ; A po-group P (partially ordered group) is

(i) a po-set, (ii) a group, in v^ich (iii) a >^ b implies that

x + a + y> x + b + y for all x,y«P. If P is a lattice satis-

fying (ii) and (iii), it is called an 1-group (lattice ordered group)

If P is a simply ordered set satisfying (ii) and (iii), it is called

an o-group (simply ordered group).



The following definition generalizes the above concepts in

the manner suggested by Frink. This dissertation will be primarily

concerned with these generalizations.

Definition 2.9 : A poip-group P (partially ordered ideal

preserving group) is (i) a po-set, (ii) a group, in which (iii) if

J is an ideal, x + J + y is either an ideal or a dual ideal for all

x,y<P. If P is a lattice which satisfies (ii) and (iii), it is

called a loip-group (lattice ordered ideal preserving group). If

P is a simply ordered set satisfying (ii) and (iii), it is called a

soip-group (simply ordered ideal preserving group).

Let P be a poip-group. Assume that there exists a minimal

element a f ? and that P has a chain

XI < X2 < X3

of length two. There exists an element t€P such that t + a = X2.

Since £a^ is an ideal, {"x2j is either an ideal or a dual ideal.

+ *
However, this is impossible because neither X2 nor X2 is contained

in the set fX2j .

2.10 ; P has a minimal element if and only if every chain of P is

of length less than two.

Suppose now that P has a chain

xi < X2

of length one and an isolated element Xq . By (2.4) X2 is an ideal

containing Xi and Xo. There exists an element t<P such that



t Xo = Xq. Since Xq is isolated, jt + Xj = Xg, t + x,i = (j5 and

ft + Xg = Xq, t + x,! = (p. By Definition 2.2 t + Xg* is neither

an ideal nor a dual ideal--contradicting Definition 2.9. Thus if P

is of finite lengrth, it is totally unordered—that is, it is a

trivial poip-group, or it is of length one and contains no isolated

elements. These statements are summarized in the following theorem;

Theorem 2.11 ; A non-trivial poip-group has either infinite

length and no minimal elements or length one and no isolated elements,

Definition 2.12 ; A poip-group P is dualistic if x + J + y

is either an ideal or a dual ideal for every dual ideal J of P and

all elements x,y €P. A poip-group which is not dualistic is said to

be non-dual istic .

The above classifications of poip-groups will serve as a

framework for the remainder of this dissertation.

All graphical representations of poip-groups in this vrork are

similar to the "Hasse diagrams" (4, p. 6).

Example 2.13 ; Any po-group P is a poip-group since, for any

*+ *+ »
elements x,y CP, x + F +y=(x + F + y) whenever F and F are

non-void subsets of P.

Example 2.14 ; The multiplicative groups of rational and real

numbers ordered according to magnitude are soip-groups.

The additive group of rational integers and the group of

integers modulo p will be represented by I and Ip, respectively.



Example 2.15 ; I and I2J, are poip-groups of length one when

ordered so that m > n if and only if ra is even and n = m J^ 1. The

diagram of I ordered in this manner is shown in Figure 2.16.

-4-2 2 4

Fig. 2.16

It should be noted that there are no non-trivial po-groups

of finite length.

Example 2.17 ; The direct sum l2k "t" P of Igj, ordered as in

Example 2,15 and any po-group P forms a poip-group when ordered as

follows: (i) if m y n, (m, x) > (n, y) if and only if ra > n, (ii) if

m = n and ra is even, (m, x) > (n, y) if and only if x > y, and (iii)

if m = n and ra is odd, {m, x) > (n, y) if and only if x < y. When

k = 1 and ? is an 1-group, Igj, + P is a loip-group under the above

ordering. Figure 2.18 is the diagram for the case in which k = 2

and P is the additive group of rational integers in their natural

order.



(p.' 2)



III. NON-DUALISTIC POIP-GROUPS

In this section we completely characterize non-dualist ic

poip-groups and in so doing obtain several important theorems con-

cerning dualistic poip-groups.

Definition 3.1 : Elements a and b of a po-set P are said to

be weakly connected if and only if there exists a finite sequence

a = x^, X2» . . . , x^ = b

of elements of P such that Xj^ is comparable to Xj^+j^ (i = 1, 2,

. . . , n-1)

.

Definition 3.2 ; A set C is said to be weakly connected if

a is weakly connected to b for every pair of elements a,b^C. A

maximal weakly connected set is called a weak component , and C

will denote the component containing a.

Weak connectivity is obviously an equivalence relation. It

will be discussed in greater detail in Section IV but is applied in

several theorems of this section.

Unless otherwise stated, all discussion will be concerned

with the elements of a poip-group P. The results concerning addition

of an element on the left of elements of P are true when restated in

terras of addition on the right.

Lemma 3.3 ; If a is weakly connected to b, x + a is weakly

connected to x + b.
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Suppose that a is weakly connected to b. Then there exists

a sequence

a = x-^, X20 . . . , x^ = b

such that x^ is comparable to x^^.^. The elements x. and x.^^ are

contained in either x^ or xt^^. By Definition 2.9 either Cx + x.,

^ "
^i+lj ^ "^ °^ /x + x^, X + x.^J i (f. Hence x + x^ is weakly

connected to x + x^^-j^. It follows from the transitivity of weak

connectivity that x + a is weakly connected to x + b.

Theorem 3.4 ; The weak component Cg is a normal subgroup of

P whose cosets are the weak components of P.

Let c and c' be elements of Cg. Then c and c' are weakly con-

nected to 0. By Lemma 3.3 c + c' is weakly connected to c + = c.

By transitivity c + c' is weakly connected to 0, implying that

c + c'CCg. Again by Lemma 3.3 -c + c = is weakly connected to

-c + = -c. Hence -c€Cg. Thus Cg is a siibgroup of P.

By Lemma 3.3 -a + Cg is a weakly connected set, all the ele-

ments of v*\ich are weakly connected to 0. Hence -a + C^CCg and

Cg da + Cg. Likewise, a + Cg is a weakly connected set, all the

elements of vAich are weakly connected to a. Thus C^IDa + Cg so that

Cg = a + Cg. Similarly, Cg + a = Cg.

Lemma 3.5 : Let P be a system vd\ich is (i) a po-set, (ii) a

group, in which (iii) for each weak component C of P and each pair of

elements x,yCP, either x + a + y_> x + b + y for all pairs a,b€C
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such that a > b or x + a + y_< x + b + y for all pairs a,b €C such

that a > b. Then P is a dualistic poip-group.

Let J be an ideal of P. Since {a, bj ^ >^ for all a,b(J,

J is a subset of C for some weak component C of P.

Let X be any element of ? and F any finite subset of J. Con-

sider the case in vd\ich x preserves order when added to the left of

elements of C (that is, x + a > x + b for all a,b€C such that a> b).

It can easily be shown that -x preserves order when added to the left

of elements of x + C. Let x + d be any element of x + F ^nd x + e

«
any element of (x + F) . ?ince x + e is over every element of x + F,

e is over every element of F. Hence e^F . Therefore, d < e so that

*+ + *+
X + d< X + e--that is, x + de(x + ?) . Hence x + F ( (x -^ F)

* +
Now let X + g be any member of (x + F) . It is under every element

of (x + F) . If we let h be any element of F , it is over all members

of F so that X + h is over all members of x + F. Thus x + h £{x + F)

and X + F CZ (x + F) ; in fact, it can be shown that the sets are

equal. Therefore, x + g is under all elements of x + F --that is, g

* »• *+
is under every element of F and g^F . This means x + g€x + F

so that X + F '"'iDlx + F) *. Hence x + F'^=(x + F)"^.

It can be shown in a similar manner that if x reverses

*+
order when added to the left of elements of C, then x + F =

+* *+ *+ +•
(x -^ F) . Thus X + F is ecrual to either (x + F) or (x + F)
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Suppose X + F = (x + F) . Since x + F C x + J,

(x + F) C_. X + J. Now any finite subset of x + J can be expressed

in the form x + F where F is a finite subset of J. Therefore x + J

is an ideal.

On the other hand, it can be shown that if x + F =

+*
(x + F) , X + J is a dual ideal.

Hence for any ideal J of P and x 6 ?, x + J is either an ideal

or a dual ideal. Dually, x + J is either an ideal or a dual ideal if

J is a dual ideal of P. Clearly x + J + y is an ideal or a dual

ideal for any ideal or dual ideal J of P and any pair x,yc P. Thus

P is a dualist ic poip-group.

The following four lemmas on poip-groups of finite dimension

will be used in the proof of Theorem 3.10, which completely char-

acterizes non-dual istic poip-groups.

Lemma 3.6 : In a poip-group P of length one the figures

a c x+a x+b

b d . x+d x+c

cannot exist simultaneously.

Assume that the figures do exist in P. By (2.4) (a, cj

is an ideal containing b and d. The elements x+b and x+d are

in X + fa, c\ . Therefore x + /a, c] is not an ideal since

X + c € (x + b) but c^ |a, c] , and it is not a dual ideal since

X + a f (x + d) but af. \a, cj . This is a contradiction since

X + a* must be either an ideal or a dual ideal.
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Lemma 3.7 : In a poip-group P of length one the figures

a c x+d

b d x+c

cannot exist simultaneously if x + a and x + b are maximal.

Assume that the figures do exist simultaneously and that

X + a and x + b are maximal. The ideal (x + d) contains x + c and

x+d but contains neither x + a nor x + b. Hence -x + (x + d)

contains c and d but does not contain a and b. By (2.3) -x + (x + d)*

is neither an ideal nor a dual ideal. Since it must be one or the

other, this is a contradiction.

Lemma 3.8 : In a poip-group P of length one x + a and x + b

are not both maximal if a > b.

Assume that a > b and that x + a and x + b are maximal.

Since x * a is either an ideal or a dual ideal and contains x + a

and X + b, there exists an element x + c6 {x + a, x + bj *. Ob-

viously (x + a)"*" and (x + b)* are ideals containing x + c.

Since -x + (x + a) is either an ideal or a dual ideal, either

-) + * +
[a, cj ^ if or (a, c] f (p. Also -x + (x + b) is either an ideal

or a dual ideal, so that either [b, cj * ^ :? or [b, cj '
=/ vS.

Clearly this is impossible unless either c > b or c < a.

Case i; f^uppose c > b. The set -x + (x + a)"^ contains

a and c but not b since x + b is maximal. By (2.3) and the fact that

b(a*, -X + (x + a)* is a dual ideal. If (bj = (a, c] *, then
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hi [a, c] . By the definition of a dual ideal {bj = [a, cj

implies be -x + (x + a) . Hence (b]- ^ /a, cj- , so that there must

{> + +
a, cj distinct from b. The set x + a contains

X + a and x + d, so that either /x + a, x + d] i (^ or

* +

/x + a, x + dj- i (p. Since x + c contains x + c and x + d, either

jx c, x + dj i (f or /x + c, x + d] i ^. The above conditions

can occur only ifx+ d<x+ aorx+ d>x + c. However, these re-

lations contradict Lenraas 3.6 and 3.7, respectively.

Case ii : Suppose c < a. The set -x + (x + b) contains b

and c but not a since x + a is maximal. By an argument similar to

that in Case i, there exists an element d such that d > b, d > c,

and d y a. Since x + d contains x + b, x + c, and x + d, either

[x + b, X + c, X + dj
"*"

^ <? or |'x + b, x + c, x + d] i ^. Hence

either x+d<x + borx + d>x + c. As before, these conditions

contradict Lemmas 3.6 and 3.7, respectively. This establishes the

lemma.

Lemma 3.9 : If P is a poip-group of length one in vi^ich

a_> b implies x + a + y and x + b + y are comparable for all x,y e P»

then P is dualist ic.

Let c and c* be maximal elements in a weak component C of P.

Then there exists a secfuence

c = X]^, X2, . . . , Xj^ = c'

of distinct elements of C such that x, is comparable to x.^-j^. We

note that x^ is maximal if and only if i is odd and in particular
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that n is odd. The sequence

x+c=x+x,, x+ x„, . . . , X + x„ = X + c'

is also a sequence of distinct elements such that x + x. is comparable

to X + Xj^i. If X + c is maximal (minimal), then x + x^ is maximal

if and only if i is odd (even). Since n is odd- x + c' = x + x is
n

maximal if and only if x + c is maximal.

Thus if c' is some maximal element of C and if x + c' is

maximal (minimal), then x + c is maximal (minimal) for all maximal

elements cfC. Since every element of ? is either maximal or minimal,

X preserves (reverses) order when added on the left of the elements

of C. It follows that P satisfies conditions i-iii of Lemma 3.5 and

that it is dualistic.

Theorem 3.10 : Any non-dualistic poip-group is (i) a po-set

of length one, in which (ii) the wealc components are the cosets of Cg,

(iii) every weak component is a principal ideal, and ( iv) Cq contains

more than two distinct elements. Conversely, any group P satisfying

conditions i-iv for some normal subgroup Cq is a non-dualistic

F»ip-group.

The latter statement will be proved first. Let P be a group

satisfying conditions i-iv for some normal subgroup Cg of P, and let

J be an ideal of P. By Definition 2.2 J is contained in some weak

component C, which by condition iii is a principal ideal, say, c .

If J is an ideal (jj consisting of a single element, then x + J + y =

{x + j + yj is, according to (i), either an ideal or a dual ideal.

If J contains two distinct elements j and j', by Definition 2.9 it
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contains Ij, j'j . Thus c fJ so that Jl^c* = C. Hence J = C.

Since x + J + y = x-»-C + y = x + C +y = Gx+c+y, x + J + y is a

principal ideal. Therefore, P is a poip-group.

In order to show that P is non-dualistic, consider a weak

component c and distinct elements c-^ and C2, which are properly

under c. That such elements exist follows from condition iv. Now

there is an x such that x + Cg = c. bince c, c-,, and Cg are distinct,

X + c =?< c and x + c, ^^ c. Thus x + c and x + c-, are minimal elements

such that [x + c, X + c-^ = (x + C2} = [cj . Hence fc} ^
*+ »

|x + c, X + c^\ but (c]i [x + c, X + c-^'l = X + cj^ . This

»
implies that x * c-^ is not an ideal. It also is not a dual ideal

since [x + c, x + c,] = ?. Thus P is a non-dualistic poip-group.

Now let P be a non-dualistic poip-group of finite dimension.

By the contraposit ive of Lemma 3.9 there exist elements a,b,x€P such

that a > b but x + a and x + b are not comparable. By Lemma 3.8 and

the fact that fx + a, x + b} CZ. x + a , there exists an element

X + c properly over x + a and x + b.

The elements a, b, and c are members of -x + (x + c) , so

that either /a, b, cj ^ ^^ or [a, b, c) i ^. This implies either

c > b or c < a. If c > b, then a and c are maximal and x + c > x + a,

which contradicts Lemma 3.8. So we must have c < a.

The set x + a is not a dual ideal since it contains two mini-

mal elements, x + a and x + b. Thus it is an ideal. It cannot con-

tain a maximal element distinct from x + c or a minimal element
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not under x + c. Hence x + a*CI(x + c)*. Clearly x + a 21>(x + c) ,

so that X + a = (x + c) .

Suppose there exists an element e such that e > c. By

Lerama 3.8, x + e is minimal. Since |_ x + c, x + ^jCZ. x + e ,

X + c > X + e. Thus x + eC(x + c) =x + a,so that e_< a. Since

e is maximal, e = a. This shows that e = [a, ej .

Now assume that there is an element f such that f > b. There

exists y such that y + b=c. So [y + a, y + b = c, y + cjCIy*^»

which implies that either | y + a, y + b = c, y + cj i ^ or

ly + a, y + b = c, y + cj i ^- Now c is minimal and c = |^a, cj .

This means that ly + a, y + b=c, y + c^ ='?so that [a ) =

^y + a, y + b = c, y + cj . Hence af/y + a, y + b = c, y+cj
,

meaning a^y + a . It follows from Definition 2.9 and the equality

<y+a, y + b = c, y + cj =9 that y + a is an ideal and a (__ y + a .

Since y + f and y + b are iny + f, {_y+f, y + b = cj ^i?

or ly+f,y + b = cj i ^' Now c = / a, cj , which means that

y + f €a . Therefore y + f^y + a and ffa . Because f = a, f is

maximal, v^ich shows that b = ^ a, b\ .

Replacing b by d and repeating the above argument, it can be

shown that d = ( a, d j for any d such that d< a. Therefore the

particular component Cg is the set a .

We will next show that every weak component of P is a prin-

cipal ideal.

Consider a weak component C and assume that it is not a

principal ideal. Then there are distinct elements Cq, c-^, <^2^'^
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such that c^ > cq and C2 > cg . There exists an element z such that

z + Cj = a. By Definition 2.9 either |z + Cq, z + c .\ i :f or

(z + CO, z + c^j * ^ i? (i = 1, 2). So {z + Cq, z + cj^, z + C2\Cla*.

Consequently, we have z+c<z+c =a and z+c<z+c=a.
Since |z + Cg, z + CgJ^^ z + Cg and z + c-j^ «z + c, , it follows

that z + Cg is not a dual ideal. Then z + Ci =

af |z + Cq, z + C2 I CI z + Cg so that c^^ < Cg. This is a contra-

diction--implying that C is indeed a principal ideal.

So P satisfies condition iii. By Theorem 3.4 it satisfies

condition ii, and it obviously fulfills conditions i and iv.

The proof of this theorem would be complete if it were known

that every non-dualistic poip-group has finite dimension. This re-

sult, along with a more useful definition of a dualistic poip-group,

will be obtained in the remainder of this section. However, before

proceeding we give an example of a non-dualistic poip-group.

Example 3.11 : Order the additive group of integers by

Placing over 2n and 1 over 2n + 1 for all integers n. The re-

sulting system is a non-dualistic poip-group with two weak components

one composed of the even integers and the other composed of the odd

integers.

Lemma 3.12 ; If a > b in a poip-group P, then x + a^ x + b

when x + b* is an ideal, and x + a_^ x + b when x + b* is a dual ideal.

Assume x + b"^ is an ideal and x + a < x + b. Then

x + a£x + b which implies a_< b. Hence x + a^x * b.
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Suppose X + b is a dual ideal and x + a > x + b. Then

X + ae X + b which means a < b. Hence x + aj^ x + b.

Lemma 3. 13 ; If x + b is an ideal of a poip-group P and

b is not maximal, then x + b = (x + b) .

Since x + b€x + b, obviously (x + b) clUx + b . So

-X + (x + b) dlh . If -X + (x + b) were a dual ideal, we would

have b C^-x + (x + h)'*'czh'^. But b CI b* is possible only if b is

+
a maximal element. Thus -x + (x + b) is an ideal. Since

be-x+ (x + b) , h CZ -X + (x + b) and x + b CI (x + b) . There-

fore, X + b = (x + b) .

Lemma 3.14 : Let a be a non-maximal element of a poip-group P.

If a > b, -x + (x + a) is a dual ideal, and x+b is an ideal, then

x + a > X + b.

Since a is not maximal, there is an element c > a in P. The

dual ideal -x + (x + a)* contains a and hence c. So x + c f (x + a)"*"

which gives x + c<x + a. By the contrapositive of Lemma 3.12,

X + a is not an ideal. Therefore it must be a dual ideal. Now

{x + a, X + b] en X + a , so that x + a and x + b have a lower bound,

say, X + g. By Lemma 3,13 x + b = (x + b) , implying that x + g€

x + b and b €g . Also x + g 6(x + a) which means g € -x + (x + a)

+ +
and g CI. -x + (x + a) . Hence b e -x + (x + a) , implying that

X + b € (x + a) which gives x + b < x + a.

Lemma 3.15 ; If a > b in an infinite dimensional poip-group P,

and a is not maximal, then x + a and x+b are comparable.
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Obviously a €-x + (x + a) . If -x + (x + a) is an ideal,

it contains a and hence b. Thus if -x + (x + a)* is an ideal,

X + b € (x + a) and x + b<x + a. So assume -x + (x + a) is a

dual ideal

.

Clearly b e -x + (x + b)"^. If -x + (x + b)"*" is a dual ideal,

* +
it contains b and thus a. Hence if -x + (x + b) is a dual ideal,

r

X + a 6 (x + b) and x + a<x + b. So assume that -x + (x + b)* is

an ideal

.

Case i: Suppose x + b is not maximal. By Lemma 3.13

-X + (x + b) = b (replace x by -x and b by x + b) . Hence (x + b)

X + b so that X + b is an ideal. It follows from Lemma 3,14 that

x + a > X + b.

Case ii ; Suppose x + b is maximal. If x + b"^ is an ideal,

then by Lemma 3.14 x + a and x + b are comparable. Therefore, assume

X + b is a dual ideal. Since P is of infinite length, it follows

from (2.10) that it has no minimal element. So there must exist an

element d< b. Now -x + (x + b)"^ is an ideal containing b and

hence d. Thus x + d £(x + b)"^ and x + d < x + b. Now a > d where

a and x + d are not maximal. Replacing b by d in the proof of

Case i, it follows that x + a is comparable to x + d. If x + a <

X + d, then x+a<x + b. So assume that x + a > x + d. Since

d fib"", X + d ex + b*. Then (x + d)*CZ. x + b*<c: (x + b)*. This

gives x * ae(x + b)"^ and x + a < x + b, completing the proof.
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In Section II it was shown that an infinite dimensional poip-

group P contains no minimal elements. If we can show that such a

poip-group contains no maximal elements either, we shall be able to

conclude from the above lemma that comparability is preserved under

addition in an infinite dimensional poip-group.

Suppose a is a maximal element of a poip-group P of infinite

length. Since P has no minimal elements, there exist a chain

a > e > f > g

and elements t,b,c eP such that t + a = f, t + b = e, and t + c = g.

The above chain now becomes

a>t+b>t + a>t + c.

Since t + b > t + a, it follows from Lemma 3.15 that a and b are

comparable. Moreover, a > b because a is maximal.

By Lemma 3.12, -t + (t + a)"^ is a dual ideal (replace x by

-t, a by t + b, and b by t + a). Now t + c 6 (t + a)*, so that

c e-t + (t + a)"^. Thus c d-t + (t + a)* and t + c*CZ(t + a)*.

* +
If b ec , then t + b 6(t + a) , which is impossible since t + b>

J
*

t + a. Kence b f c . However, by Lemma 3.15 b and c are comparable, so

b < c. The elements a and c are also comparable because t + a >

t + c and t + a is not maximal. Since a is maximal, a > c. From

Lemma 3,12 and the relations t + a > t » c and a > c, it follows

that -t + (t + c)* is an ideal. By Lemma 3.13 -t + (t + c)* = c*.

Since b Cc , t + b e (t + c)* and t + b<t + c, a contradiction.

Hence P cannot contain a maximal element, and we can now state the

foi lowi ng theorems

.
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Theo rem 3.16 ; An infinite dimensional poip-group contains

no maximal or minimal elements.

Theorem 3.17 ; Comparability is preserved under addition in

an infinite dimensional poip-group- -that is, if a and b are comparable,

then X + a + y and x + b + y are comparable for all x,y t P.

Lemma 3.18 : If a > b in an infinite dimensional poip-group,

then (i) X + a is an ideal if and only if x + a > x + b, (ii) x + a*

is a dual ideal if and only if x + a < x + b, (iii) x + b is an ideal

if and only if x + a > x + b, and ( iv) x + b"*" is a dual ideal if and

only if X + a < X + b.

Conditions iii and iv follow from Theorem 3.17 and Lemma 3.12.

Suppose X + a is an ideal. By Lemma 3.13x+a ={x+a) .

Since b€a,x + b€(x+a) and x + b < x + a.

Now suppose that x + a"^ is a dual ideal and x + a > x + b.

By Lemma 3,12 x + b is an ideal. It follows from Theorem 3.16 that

there is an element c > a. Again by Lemma 3.12x + c<x+a and

x + c > X + b. Hence x + a>x + c>x + b. The inequalities

x + a>x + c, c>a, and Lemraa 3.12 imply that -x + (x + c)* is a

dual ideal. Now x + b e (x + c)"^, so that b ( -x + (x + c)"^. Then

b CL'X + (x + c)*, at-x + (x + c)*, and x + at(x + c)*. This

implies x+a<x-t-c, a contradiction.

Thus if X • a* is an ideal, x + a > x + b, and if x + a* is

a dual ideal, x + a < x + b. These statements and their contra-

positives give conditions i and ii.
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An immediate consequence of this lemma is the following

result.

Lemma 3.19 : Let a and b be comparable elements of an

infinite dimensional poip-group. Then x + a is an ideal if and only

if X + b* is an ideal, and x + a* is a dual ideal if and only if

X + b is a dual ideal.

Lemma 3.20 : An infinite dimensional poip-group P is (i) a

po-set, (ii) a group, in which (iii) for each weak component C of P

and each pair of elements x,y eP either x + a + y_> x + b + y for

all pairs a,b€:C such that a_> borx+ a + y<x + b + y for all

pairs a,b€ C such that a_> b. Conversely, any system P satisfying

conditions i-iii is a dualistic pxjip-group.

Let X be any element and C any weak component of P. First

suppose that x + Cq is an ideal for some cq 6 C. For any other

c €C, there exists a sequence

Cq = ^1.^2 ^n = =

+
such that x^ and x.^j^ are comparable. If x + x. is an ideal, by

Lemma 3.19 x + x,^, must be an ideal. Hence x + c is an ideal.

Similarly, if x + Cq is a dual ideal for some c^ € C, x + c is a

dual ideal for all c fcC. That ? satisfies condition iii now follows

from Lemma 3.18 and the extension of the above argument to the case

in which an arbitrary element y is added on the right of elements

of C.
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This lemma and Lemma 3.5 enable us to conclude the following

result which we noted before was necessary to complete the proof of

Theorem 3.10.

Theorem 3.21 : Every infinite dimensional poip-group is

dualistic.

Theorem 3.22 ; A dualistic poip-group P is (i) a po-set,

(ii) a group, in vd\ich (iii) for each weak component C of P and each

pair of elements x,y € P either x + a + y_> x + b + y for all pairs

a.beC such that a_> b or x + a + y< x + b y for all pairs a.bcC

such that a_> b. Conversely, any system P satisfying conditions i-iii

is a dualistic poip-group.

The latter statement of the theorem is merely Lemma 3.5.

A dualistic poip-group P obviously satisfies conditions i and

ii. By Lemma 3.20, if it is of infinite dimension, it also satis-

fies condition iii. Hence it remains to be shown that any dualistic

poip-group of dimension one satisfies condition iii.

So assume that P has length one. Consider elements a,b € P

such that a > b and suppose x + a and x + b are not comparable for

some X tP. Now [x + a, x + bj d x + a , so that either

{x + a, X + b] *
^« (? or [x + a, x + b} "^

^ (?. Since x + a and x + b

are not comparable, there exists an element which is either properly

over them or is properly under them. Hence x + a and x + b are

either both maximal or both minimal. By Lemma 3.8 and its dual, this

is impossible. Therefore x + a and x + b are comparable.
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In the proof of Lemma 3.9 it was shown that if P is a poip-

group of length one in which a > b implies x + a + y and x + b + y

are comparable for all x,yt?, then P satisfies condition iii. This

completes the proof.

Since non-dualistic poip-groups were described completely in

Theorem 3.10, only dualistic ones will be considered in the sequel.

Also, the above theorem provides us with a more useful definition of

a dualistic poip-group, which will be employed in the following

sections.



IV. CONNECTIVITY

The immediately preceding theorem suggests the following

definitions, which will lead to an even finer partitioning of a

dualistic poip-group than that determined by the weak components.

Definition 4.1 ; An element x is said to be order preserving

on the left relative to the weakly connected set C^ if x + a_> x + b

for all pairs a > b in C. It is said to be order reversing on the

left relative toCifx + a<x + b for all pairs a > b in C.

By Theorem 3.22 any element of P is either order preserving

or order reversing on the left relative to any given weak component.

Henceforth there will be little occasion to consider ideals.

However, it should be noted that if J is an ideal contained in the

weak component C and if x is order preserving (reversing) on the left

relative to C, then x + J is an ideal (dual ideal). Also, if F is

a non-void subset of the weak component C, then x + F = (x + F)

+ *
or X + F = (x + F) depending on vdiether x is order preserving or

order reversing on the left relative to C. These results are con-

tained in the proof of Lemma 3.5.

Definition 4.2 ; An element x is of order preserving type 1

relative to the weakly connected set C if it is order preserving on

the left and on the right relative to C. It is of order preserving

type 2_ relative to C if it is order preserving on the left and order

reversing on the right relative to C. It is of order preserving

26
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type _3 relative to C_ if it is order reversing on the left and order

preserving on the right relative to C. It is of order preserving

type 4 relative to C if it is order reversing on the left and on the'

right relative to C. An element of order preserving type 1 (type 2)

relative to C^ and an element of order preserving type 4 (type 3)

relative to C^ are said to be of opposite order preserving types

relative to Cg. The set of all elements of C^ which are of order

preserving type i relative to C^ will be denoted by C„(C, ) (i =

1, 2, 3, 4).

i j
We note that C^(.C^) and C^(Cg), i ^ j, are disjoint.

Any weakly connected set partitions P into from one to four

classes of element types. If it is commutative, all elements of P

are either of order preserving type 1 or order preserving type 4

relative to any given weakly connected set.

Example 4.3 ; Let P be generated as a group by a and x under

the conditions x + x = and x + a = -a + x. '.vlien it is ordered as

shown in Figure 4.4, P is a non-commutative dualistic poip-group.

It can be verified that a is in Cq (C„) and Cq (C ) and that x is a

2 2
member of Cx (Cg) and Cx (C^^) •

1

2a
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Lemma 4.5 : If x is order preserving (reversing) on the left

relative to C^, -x is order preserving (reversing) on the left rel-

ative to C^+a-

Let a^^ and a2 be elements of C^ such that aj > ^2 ^"^"^ suppose

that X is order preserving on the left relative to C^, so that

X > 3]^ > X + ag. The element -x is order preserving on the left

relative to C^+a because -x + (x + aj^) = a2^_> a2 = -x + (x + 82 )

.

The remaining case can be proved in a similar manner.

Theorem 4.6 ; Cg = C^ (Cq)UCq^ (Cq).

For any element y € Cg there exists a sequence

= X]^, Xg, . . . , Xj^ = y

of distinct elements of Cq such that x. is comparable to Xj^n.

1
Clearly 6CQ(Cg), so to complete the proof it is necessary to show

only that xi (Cq[Cq)UCq{Cq) implies x^^.;^ 6 Co(Go)^Co(Co)

.

12 1
Assume Xi6Cg(Cg) and x^^j^ f Cq(Co) . By Lemma 4.5 -x-f Cq(Cq)

2
and 'X^^i eCQ(CQ).

Case i: Suppose Xj^ > Xj^+i. It follows that Xj^ - xj+]^ < 0.

However, it is also true that > Xj^-^ - x^ whence -x^+j^ > -x^ and

x^ " ^i+1 > 0» a contradiction.

Case ii ; Suppose x^ < x^+j^. Obviously x^ - x^+j^ > 0. But

< x^^j^ - x^, so that -Xj+2^ < -x- and Xj - x^^j^ < 0, which is

impossible.

1 2
This proves that x^ eCg{Cg) implies Xj^+j^ ^Cq(Cq) . Continuing

1 / / 4
with this procedure it can be shown that x. 6 CQ(CQ)l7Cg(Cg) implies
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2ll3 1 I I A
that x^^-^(Cq{Cq)\JCq{Cq) and, therefore, that x^^.j^ 6 Cq(Cq)C/Cq(Cq) .

The theorem follows.

Theorem 4.7: For all e 6 P, c];(C_) = 0^(0 ) and'00 e

CqCCq) = Co(C^).

Let 6]^, ©2 ^
'-'e
^ such that ei > e2 and consider an element

Case _i: Suppose e, is order preserving on the right relative

to Cq. By Lemma 4.5 -e^ is order preserving on the right relative to

C so that > e, - e,. Therefore, s > s + (e^ - e, ) = (s + eg) -e,

and s + e-^> s * e2'

Case ij ! Suppose e^ is order reversing on the right relative

to Cq. By Lemma 4,5 0< e^ - e, . Thus s< s + (e^ - e-i) = ^^ * ®2^ ~ ®1

and s + ej^ > X + eg

.

These arguments show that s is order preserving on the left

1
relative to Cg . By left-right symmetry, stCgCCg).

4 4
Similarly, s(Cq(Cq) implies s^CqCC ), enabling us to con-

clude that cJ(Cg)ClcJ(C^) and C^(Cq)CZCq[C^) . However, by

Theorem 4.6 Cg = cJ(Cg)L/Cg(CQ) . Since cJ(Cg)/lCg(Cg) = (?,

C^^O^ =^l^V «ndc5(Co) =cJ(C^).

As a result of this theorem, no ambiguity will arise if14 14C-(C ) and Cg(C ) are denoted by C- and C^, respectively.

1 4
Theorem 4,8 : The set Cg is a normal subgroup of P, and Cg

either is empty or is one of its cosets. For any e €P,
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Cg = (e + cj) U (e + Cq). Furthermore, for any f 6 P, e + cj = C^iC^)

4 j
and e + Cg = Cg(Cf) where i is the order preserving type of e relative

to Cf and j is the opposite order preserving type relative to C^.

Obviously Cg = e + Cq = e + (Cq UCq) = (e + cj) U (e + Cq)

and Cg = Cq + e = (cj UCq) + e = (cj + e) (J (cj + e). Now let f;^ and

f 2 be elements of Cf such that f i > f2 and let e + s be any member of

e + Cq. Since s ^ cj = C^(C^), s + f-j^ > s + fg. Clearly s +
f;i^ €

Cq + fi = C^, so that (e + s) + f ^ > (e + s) + fg if e is order pre-

serving on the left relative to Cf, and (e + s) + f j^
< (e + s) + f2

if e is order reversing on the left relative to Cr. In other words,

e + s is order preserving (reversing) on the left relative to C^

when e is order preserving (reversing) on the left relative to C^.

Similarly, it is order preserving (reversing) on the right relative

to C, when e is order preserving (reversing) on the right relative to

C^. This shows that if i is the order preserving type of e relative

to Cf, then e + CoCi:Ce(CfK By left-right symmetry, Cq + eClCg(Cf).

It may be proved in much the same manner that if i is the

order preserving type of e relative to C^, then e + Cq ClCg(Cf ) and

Cq + eCIC^(C^) where i and j are of opposite order preserving types

relative to C^. Since (e + Cj) (J (e + C^) = C^ and Ci(Cj) fl c|(C^) = (p.

it is true that e + cj = C^(Cf) and e + Cq = C^(Cf:).
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Likewise ci + e = cMc.) and ci + e = C^(C,). It follows that
u e r u e r

11 4 4
e * Cq = Cq + e and e + Gq = Cq + e.

If s and t are any members of Cq, then s + t£s + CQ =

C^{C_) = CL By Lerniaa 4.5 s € C^ implies -s € C^. Hence C^ is a

normal subgroup of P.

If Ci is not empty, there exists an r^ci. Then r + Cg =

r + C1(C ) = C4(C_), so that C^ is a coset of cL This completes

the proof.

Corollary 4.9 ; For any weak component C and any f € P, either

C = G^(C^)Uc*(C^) or C = c2(C^)(jc3( C^).

The decomposition of P into the cosets of Cg yields little

information concerning the structure of P, but it motivates the

investigation of another decomposition determined by the maximal

weakly connected set in Cg.

Definition 4.10 : The element a_ _is strongly connected to b

if and only if there exists a sequence

a = x-j^, X2, . . . , x^ = b

such that X. (C^(Cg) for some j and i = 1, 2, . . . , n and such that

x^ is comparable to Xj+i for i = 1, 2, . . . , n - 1.

Obviously if two elements are strongly connected, they are

weakly connected. Note that strong connectivity is an equivalence

relation on a poip-group but does not necessarily have meaning for

a po-set per se.
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Definition 4.11 ; A set S is strongly connected if and only

if every two elements of S are strongly connected. A maximal

strongly connected set is called a strong component of _P, and Sg

will denote the strong component containing a.

Any strongly connected set consists of elements of only one

order preserving type relative to any weakly connected set. Ob-

viously SqCICqCUCq.

Lemma 4.12 ; If a is strongly connected to b, then x + a

is strongly connected to x + b.

There exists a sequence

a = x^, x^, . . . , x^ = h

of elements of S such that x, is comparable to x.^^. Now

£^CICJ(Cq) for some j so that x + S^Clx + C^^Cq) = C^+a(Cg) for

some k. In particular, the members of the sequence

x + a = X + Xj^, X + X2, . . . , X + Xj^ = x + b

are contained in C^+qC^q). Furthermore, by Theorem 3.22 x + x. is

comparable to x + ^c.^-, . Hence x + a is strongly connected to x + b.

Let a and b be elements of £g. Then a and b are strongly

connected to 0. By Lemma 4.12 a + b is strongly connected to

a + = a, so that by transitivity it is strongly connected to

and is therefore in S . Again by Lemma 4.12 -a + a = is strongly

connected to -a + = -a whence -afSQ. Thus £q is a subgroup of P.
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The set a + S„ is contained in i: because a ^ E^ and all ele-
U a a

ments of a + S^^ are strongly connected to a according to Lertima 4.12.

Likewise, -a + Sg is contained in EQ--that is, Sg is contained in

a + S- and, therefore, a + S. = S . Similarly, S_ + a = S so that
' ' a a

S^ is a normal subgroup of ?, proving the following theorem.

Theo rem 4.13 : S is a normal subgroup of P, and the strong

components of P are the cosets of Sg.

In the next section the strong components are used to char-

acterize the order structure of dualistic poip-groups. This section

is concluded with the following example illustrating the relationships

among the cosets of £q, CQ(Cg), and Cg.

Example 4.14 : Let P be the poip-group composed of the

additive group of integers ordered as shown in Figure 4.15. Any

block of integers in the diagram is a class of integers modulo 12.

In this poip-group

SgUS^USg = Cj(Cg),

£2USgUSj^Q= Cg(Cg),

S^USyUSii- cJ(Co),

s^UsjUSg = c|(Gg),

cJ(Co)UcJ(Co) = Cg,

Cj(Cg)L/C^(Cg) = C^.
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V. A DECOMPOSITION THEOREM

In this section it will be shovm that a dualistic poip-group

is order isomorphic to the ordinal product of a certain finite di-

mensional poip-group and a po-group.

Lemma 5.1 : If S^CH^i^^o^ ^"^ -y^cJ^^Q), where i f j, and

if xi > Yi for some x^" in Sj^ and some y^ in Sy, then x* > y' for

every x' in S and every y' in S .A y

Consider the case in which i = 1 or 2 and j = 3 or 4. Let

x„ be a member of S vAiich is comparable to x, . If x„_> x^ , then

X2 > yj^. So assume that ^2 < xj^.

Case i; Suppose Xj^^C^lCg). Then -x-^ is order preserving

on the right relative to C^, and x-^ > y-^ implies that > y^^ - x-^.

Now x^^-C^iC^) , so that Xg > (y-i - x,) + Xj. On the other hand,

x-^> X2 and the fact that -x-j^ is order preserving on the left rel-

ative to C imply that 0_> -Xi + X2. Since y^ is order reversing-

on the left relative to Cq, we have Yi^ (Yt - x-,) + X2 and, there-

fore, Yi < X2.

2
Case ii : Suppose X]^eCjj(Go). Then -xj^ is order reversing

on the right relative to C^^, and x-^ > y^ implies that < y-^ - x-^.

2
Now X2 €Cjj(Cq), so that X2 > (y^ - x-^) + X2. However, xj^_> X2 and

2-Xj^C^CC^) give >_ -Xi + X2. Now since y is order reversing on
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the left relative to Cq, it is true that Yi <_ ivi - X2) + X2 and

hence that y^^ < X2.

The above argument proves that every element of S^^ which is

comparable to Xi is greater than y,. It follows that any x' in S ,

being strongly connected to x-^, is also greater than y^^. Using a

similar procedure it can be shown that any y' in S is less than x^^.

So each y' (_ S is under x, and hence under every x' € S . This
y i X

establishes the cases in which i = 1 or 2 and j = 3 or 4. The dual

argument establishes the remaining cases.

Definition 5.2 : Order the elements of P/Sg as follows:

S^ >^ S if and only if £ = S or every x' in £ is greater than

every y' in Sy. This ordering will be called the natural ordering

of P/Sq .

The natural ordering of P/Sq is obviously a partial ordering,

and henceforth the symbol ?/£q will represent the group P/Sg ordered

in this manner.

Theorem 5.3 : The mapping h given by h(x) = S^ is a group

horaoraorphism of P onto P/£q such that x_> y implies h(x) >_ h(y) and

h(x) > h(y) implies x > y. A set C is a weak component of P if and

only if h(C) is a weak component of P/£q. Furthermore, when some

weak component of P/Sg contains at least two distinct elements, every

weak component of P/Sg contains at least two elements; for any a,x€ P

X is of order preserving type i relative to C if and only if h(x)

is of order preserving type i relative to h(C^) (i = 1, 2, 3, 4).
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Clearly h is a group horaoraorphisra. Consider elements x^ y

i"
"^x

"^ ^x^^O^ ^ <^x^^0^- ^^ ^ ^"^ y ^^® ^°^^ elements of cJ^{Co) or

both elements of C^(Go), then they are members of the same strong

component i^, so that B^ = Sy. However, if x CC^lCo) and yeCxCCg),

where i t^ j , then according to the preceding lemma every element of

Sjj is over every element of C , so that S^ > 3 . This shows that

X > y implies h(x) >_ h(y) .

Suppose now that h(x) = S^ > S^ = h(y). Then S^^ i Sy. By

Definition 5.2 every x' in S^^ is greater than every y' in Sy, so that

in particular x > y.

It follows from the isotone property of h (that is, the

property that x_> y implies h(x) > h(y) ) that if C is a weak com-

ponent of P, then h(C) is a weak component of P/Sg. Conversely,

since h(x) = S^_> S = h(y) implies that x is connected to y, it is

clear that if h(C) is a weak component of P/Sg, then C must be a

weak component of P.

By Theorem 4.8 if some weak component of P/Sg contains at

least two distinct elements, then all of them contain at least two

elements. Suppose h(a) > h(b) . V/hen h(x) + h(a) > h{x) + h(b), it

is true that h(x + a) > h (x + b) and x + a > x + b. On the other

hand, h(x) + h(a) < h(x) + h(b) implies h(x + a) < h(x < h) and

X + a < X + b. Thus when h(x) is of order preserving type i rel-

ative to a weak component h(C ) having at least two elements, xfC^^CCg)

Similarly, if x^C^CC^), then h(x) is of order preserving type i

relative to hCC^).
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Corollary 5.4 : The system P/Sg is a dualistic poip-group of

finite dimension.

If each weak component of P/Sq consists of merely a single

element, P/Sq is totally unordered and is obviously a dualistic poip-

group. Otherwise, the result follows from Theorems 3.22 and 5.3.

Suppose that S^ > Ey > S^, in P/Sq. Then by Theorem 5.3,

X > y > z. However, x, y, and z are all in C^^ = C^{Cq) U C^ICq),

so that at least two of them are members of either C^(Co) or C^{Cq).

These two elements are thus strongly connected--meaning that they

are in the same strong component. This is impossible since

^x '^ ^y ^ ^z ^ ^x' ^^"^^s there is no chain of length greater than

one in P/Sq*

Corollary 5.5 : Let x and y be weakly connected elements

of P. If P/Sg is of length one, x and y are of the same order pre-

serving type relative to any given weak component of P if and only

if S^ and S are both maximal or both minimal elements of P/Sg.

This corollary follows from the observation that when

Sjj f Sy , then S^ is comparable to £y only if x and y are of dif-

ferent order preserving types relative to any given weak component

of P and the fact that any weak component of ? contains elements of

only two order preserving types relative to any other weak

component.

Corollary 5.6 : If P/Sg is of length one, the elements of E^

have the same order preserving properties in P as S has in P/Sg--
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that is, X is of order preserving type i relative to C if and only

if S is of order preserving type i relative to h(C).

Corollary 5.7 : If P/Sq is commutative and of length one,

then C^ = ci(n ) U cJ(C^) for all a, x 6 P.
A X d X d

Theorem 5.8 ; The strong component Eg is a self-dual po-

group under the relativized ordering. Furthermore, every coset of

Sq is order isomorphic to S g , and if a is any element of the coset S

of Sg, such an isomorphism may be described as follows: (i) if a is

order preserving on the left relative to Cg, then b€S corresponds to

-a + bCEg, and (ii) if a is order reversing on the left relative to

Cg, then b€£ corresponds to -b + agSg.

Obviously £q is a po-set under the relativized ordering.

Moreover, SgCICg(Cg), so that every element of Sg is order preserving

on the left and right relative to Sg. Hence £g is a po-group.

To show that Sg is self-dual, let x correspond to -x for all

x€Sq. If y > z in Sg, then > z - y, so that -z> -y— that is,

the correspondence is an anti- isomorphism (in the order sense) and

Sg is self-dual.

Now let S be some coset of Sg and a some element in S,

Suppose that the members of S = a + Sg are order preserving

on the left relative to Cg and let b€S correspond to x = -a + b€Sg

(denote this by b < > x) . The correspondence is clearly one to

one. If y and z are members of Sg such that y_> z where c < > y
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and d< > z, then -a + c = y_> z = -a + d and, since a is order

preserving on the left relative to Cg, c_> d. Now if c > d in Lq,

where c < ^ y and d < > z, then y = -a + c_>-a + d=z since

-a is order preserving on the left relative to Cg = C^,. Therefore,

the correspondence is an order isomorphism.

If the elements of £ are order reversing on the left relative

to £q, a procedure similar to that above shows that £g is anti-

isomorphic to £ under the correspondence which carries b6£ into

-a + b6£g. Since £q is ant i- isomorphic to itself under the cor-

respondence which carries every element of Sg into its inverse, this

indicates that £ is order isomorphic to Sg under the correspondence

which carries b£E into -(-a + b) = -b + a££^.

Theorem 5.9 : A dualistic poip-group P is order isomorphic

to the ordinal product {P/£g)»£g of the finite dimensional dualistic

poip-group P/£g and the po-group Sg. If A is a set of coset repre-

sentatives, then the isomorphism may be described as follows: (i) if

b € P is order preserving on the left relative to Sg, then b cor-

responds to (Sj^, -a + b) where a is in Sj^D A, and (ii) if b^P is

order reversing on the left relative to Sg, then b corresponds to

{S)^, -b + a) where a is in S^, D A.

When b6P and (Sj^, y) correspond in the manner described in

(i) and (ii), denote this correspondence by b< ^> (Sj^, x).

Suppose b< ^> (Sj-,, y) and c< ^> (£b, z). Then b and c

are both members of £^ . It follows from Theorem 5.8 that b > c if
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and only if y > z. Hence b> c if and only if {L.-^, y) >_ {%, z) since

(according to the definition of the ordinal product of two po-sets)

when u = V, (u, y) > (v, z) if and only if y_> z.

Suppose now that b< > {£},, y) and c< •> (S^, z), where

S^ ^ t^. Then b ^ c. If b > c, it is implied by Definition 5.2

that S^> S^. Hence if b > c, {l^, y) > (£^, z). When {S^, y) >

(£^, z) , it follows that %,> %• Thus by Definition 5.2,

(S^, y) > (£(,, z) implies that b > c. Therefore, b > c if and only

if (Sj^, y) > i^^Q, z), completing the proof.

The above theorem is illustrated by Example 4.14 in which

P/£g is composed of the integers modulo 12. When it is ordered in

the natural manner, P/Sg may be represented by the diagram below.

The elements of the figure are, of course, added modulo 12.

4 8 3 7 11

10

Fig. 5.10

It is easily verified that when P is of finite length,

^0 ~ 1^3' This enables us to give the following definition.

Definition 5.11 : A poip-group P is said to be upright if

P/Sg is of length one and tg is maximal in P/£g. It is said to be

inverted if P/£g is of length one and Sg is minimal in ?/Sg.

The dual of any theorem concerning upright poip-groups

holds for inverted poip-groups.
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Theo rem 5.12 ; Let P be a dualistic poip-group, P/Sq be of

length one, and S^ be a maximal (minimal) element of ?/Sg. Then x is

order preserving on the left relative to C^ if and only if x + S^

is maximal (minimal), and x is order reversing on the left relative

to Cg if and only if x + S^ is minimal (maximal).

As before, let h be the mapping defined by h(x) = S^. Con-

sider P/Eg = h(P) where £g = h(a) is maximal (minimal). Then

S^ = h(x) ^ P/Cg is order preserving (reversing) on the left relative

to h(Ca) if and only if ^x+a ~ ^^^ "^ ^^ ^^ maximal (minimal), and it

is order reversing on the left relative to h(Cg) if and only if x + a

is minimal (maximal).

The theorem now follows from Corollary 5.6.

Corollary 5.13 ; Let P be an upright dualistic poip-group

such that P/S is of length one. An x6P is of order preserving

type 1 (order preserving type 4) relative to Cg if and only if t-^ is

a maximal (minimal) element of P/Sg.

Many of the results of this section have been concerned only

with the case in which P/Sq is of length one. When it is of length

zero, P has a simpler form since then Sj^ = Cj^ for all x€'P. This

means that the elements of any weak component of P are all of the

same order preserving type relative to any other weak component of P.

Furthermore, every weak component is order isomorphic to the po-

group Cq.
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It was shown in this section that when P/Sq is of length one,

many of its properties are carried over to P. Also, the order

structure of P can be determined if the order structure of Cq and

P/Sg are known. Since Sg is a po-group we need characterize only

finite dimensional poip-groups.



VI. FINITE DII-ENSIONAL POIP-GSOUPS

The only finite dimensional poip-groups which need to be

given further consideration are the dualistic poip-groups of length

one. These systems are characterized below.

6a: ;>fTien a is a maximal element of a poip-group of length one,

Tg will represent the set [x€P / x< a] , and when a is

minimal, it will denote the set [x€P / x > al .

Theorem 6.2 ; An upright dualistic poip-group P satisfies

the following conditions: (i) if teT^, then -tCT^^; (ii) for any

element s of s' + Cg, every element of s' + Cq can be written in

the form s - t^ . t2 - . . . - t^, t-fTg (i = 1, 2 n),

where the elements t^ are not necessarily distinct; (iii) if

^1 * ^2 * • • • * *n
= °' ^i^^O (i = 1' 2 n), then n is

an even integer; (iv) a + Tq = Tq + a for all a€P; (v) a + Tq = T

for all a€P; and (vi) if s is maximal, then s + t, +
. . . + t

1 n'

tj^eTg (i = 1, 2, . . . , n), is maximal (minimal) if and only if

n is even (odd). Conversely, let G be a group and Cq a normal sub-

group of G which contains a non-void subset Tq satisfying condi-

tions i-iv. Define an ordering on 6 using conditions v and vi,

first assigning some representative element sCs' + C (let

44
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be the representative element of Cg) the role of a maximal element.

Under this ordering G is an upright dualistic poip-group in which Cg

is the set of all elements weakly connected to and !„ is the set of

elements of G which are less than 0.

Let P be an upright dualistic poip-group.

If t < 0, then -t + t = is comparable to -t, so that,

since is maximal, -t < 0. This establishes condition i. If

b €T , by (6.1) b is comparable to a. Hence -a + b < and

-a + b = t for some tCT . Consequently, b = a + t, so that b is

in a + Tg, proving that T da + Tg. Now let t be a member of Tg,

whence t < 0. Therefore a + t is comparable to a but a + t f a--

that is, a + t is in T^. This implies that T^IDa + Tg and thus

Tg = a + Tq. Similarly, T^ = Tg + a, proving conditions iv and v.

Next suppose that a is an element of Cg not of the form

t-i + tg + . . . + t , t.£Tg. There exists a sequence

= X]^, X2, . . . , Xj^ = a

such that Xj^ is comparable to Xj^+]^. Assume that k is the minimum

integer such that Xj, is not of the form t-]^ + tg "*••. + tj^,

t, f T-. Then x, , = t, + t„ + . . . + t for t . € T„ and x, , is
1 k-1 12 n 1 k-1

comparable to x,. By condition v^ x, = Xr^_-, + t for some t€Tg,

so that Xj, = ti + tg + • . . + t + t, a contradiction. Hence

every element of s + C^ can be expressed as in condition ii.



46

Suppose a = s + tj^ + t2 •...+ t where s is maximal and

t.^Tpj, Now t][< means s + t, is comparable to s. Since s is

maximal,

s + t^ < s,

s + tj^ + tg > s + t-]^,

^ ' h " "^2 " *3 < = " *1 " *2'

^ " h " ^2 * ^3 ' ^4 > ^ ' H * ^2 * *3'

and 80 on. Thus s + t-j^ + t2 + . . . + tj^ > s + t^ + t2 + . . . + t i

if n is even and s + t, + to + . . . + t_ < s + t, + t^ + . . . -^ t ,
1 z n 1 z n-i

if n is odd. Hence a is maximal (minimal) if and only if n is even

(odd), establishing condition vi from which condition iii follows

immediately.

Conversely, let G be a group containing a normal subgroup Cq

which has a subset Tq satisfying conditions i-iv, Suppose that

s + t-j^ + tg + . . . + tj^ = s + t|'+ tg' + . . . + t^' where

*i' ^j' €^0 (i = 1» 2, . . . , m; j = 1, 2, . . . , n). Then

t-j^ + tg + . . . + tjjj - tj^' - t^_-^' - ... - t]^' = 0. This equation,

along with conditions i and iii, implies that m + n is even— that is,

that either m and n are both even or both odd. Thus conditions v

and vi establish a well-defined partial ordering for G. Under this

ordering it is clear that G is a po-set of length one with no

isolated elements.
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Let t-| + to . . . + t , t.€Tg, be an element of Cg.

By (i) and (v) , t^ + t„ + . . . + t is comparable to

c + t, + t„ + . . . + t , ; t, + t„ + . . . + t , is comparable to
1 I n-i 1 I n-i

c + t, + tr, + . . . + t „i t, + to + . . . + t „ is comparable toiii n-z'iz n-^

c+t, +to+...+t „. Continuing in this manner, it follows

that ti + to + . . . + t is weakly connected to 0. Similarly, any

element weakly connected to is of the form ti + t2 + . . . + t ,

t 6 Tq. Hence C^ is a weak component of G.

Let X be some element of G. If a > b, then x + a is com-

parable to X + b since a = b + t for some t € Tq implies x + a =

(x + b) + t. The remainder of the proof is that of Theorem 3.9.

Example 6.3 : Let G be a group which contains a commutative

normal subgroup Cq with basis elements q-^i <3'2» • • » <?k
each of

even order. Every element of Cq can be expressed uniquely (apart

from order) as a summation n^^g^^ + n2g2 *... +
'^k'^k

^^''^^

jgj, . . . , gj,, - g-j^, . . . , -
gj,

j . Suppose that

™1^1 *••••+
™k^k * "i {-<?!) + . . . + '^k^"'=^k^ ' ^' '^^^

(m, - n, )g, + . . . + (m, - iV.)^!^ = 0» and (m. - n.)g^= (i =

1, 2, . . . , k). Hence mj - n^ = P^^g^ for some integer p., and

fli. - n, is even since q, is even. Thus m, + n, is even, implyingli 1 li , f J ^

that m^^ + . . . + mj, + n-]^ + . . . + nj, = (m-j^ + nj^) + . . . + (nij, + nj,)

is even. Therefore, Tg satisfies conditions i-iv of Theorem 6.2.

_< n . < q. where q. is the order of g^^. Let i.

q
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As a particular example, consider a group G in which Cq is

generated by a and b under the conditions a + b = b + a, 2a = 0, and

4b = 0. Let Tq = {a, h, 3bj . Then when Cq is ordered according

to conditions v and vi of Theorem 6,2, Cq becomes the poip-group

represented by the following diagram.

a + b a »• 3b 2b

Fig. 6.4

Assign s + a C s •• Cq , sdCr,, the role of a maximal element

of G and order s + C according to Theorem 6.2. Then s + C is as

indicated below.

s + a s + b s + 3b s + (a + 2b)

s + (a + b) s + (a + 3b) 6 + 2b

Fig. 6.5



VII. THE ALGEBR.'IIC Cftf.RACTER OF POIP-GROUPS

It has been shown that many of the properties of P, in

particular its structure as a po-set, can be determined when Sq and

P/Sg are known. In this section more is said about the relation-

ships between the latter systems and the algebraic nature of P.

Theorem 7.1 ; Let G be a group satisfying (i) G contains a

normal subgroup S ordered so as to form a connected po-group, such

that (ii) G/S is ordered so as to form an upright dualistic poip-

* »
group of length one, and (iii) a + =0 + a for all a€G. Then

G can be ordered in one and only one way to form a dualistic poip-

group such that the po-groups Eq and S coincide and the poip-groups

P/Sq and G/S coincide. This ordering is described as follows:

(1) if a + S ^f b + S, then a > b if and only ifa + £>b+£in

G/£, (2) if a + £ = b + £ is maximal in G/£, a_> b if and only if

a - b (0 , and (3) if a + £ = b + £ is minimal in G/£, a > b if

and only if b - a €0 .

The ordering defined on G is obviously a reflexive and anti-

symmetric relation. In order to show that it is transitive, con-

sider a > b and b > c in G.

Case _i : Suppose a + £ = b+S = c + Sis maximal in G/S.

Then a - b > and b - c > 0. £ince £ is a po-group, we have a - c

(a - b) + (b - c) > (a - b) + = a - b > 0, implying that

a - c C and a > c.

49



50

Case ii ; Suppose a+S=b+S=c+Sis minimal in G/£.

Then b - a > and c - b > 0. Therefore, c - a ==

(c - b) + (b - a) > (c - b) + = c - b > 0, implying c - a 60*

and a > c.

Case iii : Suppose a+S=b+£is maximal and c + S is

minimal in G/£. Then a+S = b+S>c + S, proving that a > c.

Case iv ; Suppose a + S is maximal and b+S=c+Sis
minimal in G/£. Then a + S>b+S = c + S, giving a > c.

Therefore, G is a po-set, and we want to show that under

this ordering G is a dualistic poip-group.

First observe that if x - y€0 , then -y6-x + =0 -x,

«

implying that -y + xCO .

Now consider any element x€G and a > b in a weak component C,

Obviously a + £ > b + S.

Suppose X + S is of order preserving type 1 relative to the

weak component of G/S which contains a + S. It will be shown that

X itself preserves order when added to the left and to the right of

elements of C.

Case i: Suppose a and b are ordered according to (1). Then

a + S > b + S and (x + a) + £ = (x + S) + (a + £) > (x + £) + (b + S)

(x + b) + S. Hence x •• a > x + b. Similarly, a + x > b x.

Case ii : Suppose a and b are ordered according to (2).

This means a - b60 and a + S = b+£is maximal in G/S. Then

-(x + b) + (x + a) = (-b - x) + (x + a) = -b + a CO . Therefore,
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(x + a) - (x + b) CO . Since x + S is order preserving on the left

relative to the weak cxamponent of G/£ containing a + S, and a + S

is maximal, then (x + a) + S = (x + S) + (a + £) must be maximal.

Thus X + a > x + b. On the other hand, (a+x)-(b+x)=

{a x) + (-X - b) = a - bfO . However, (a + x) + S is maximal in

G/S, so that a + X > b + X.

Case iii ! Suppose a and b are ordered according to (3).

The proof that x + a > x + b and a + x>b + xis sinilar to that

of the preceding case.

Continuing in this manner, it can be shown that the order

preserving properties of x 6 G are the same as those of x + S in G/S.

It follows from Theorem 3.22 that G under the ordering described by

(l)-(3) is a dualistic poip-group P. It is easily shown that Sq

and P/Sg coincide with S and G/S, respectively.

Now consider an upright dualistic poip-group P. Obviously

it satisfies (1). If a > b, where a+S=b+Sis maximal in P/Sq,

then bCC^(Cg) and -b€C_J(Cj^). Hence a - b > and a - b CO*.

»
liareover, a - b€ implies a - b > 0. Thus if b + S is maximal,

a - b€0 if and only if a_>^b. We have proved that P satisfies (2),

Similarly, it can be shown that P satisfies (3). This establishes

the uniqueness of the ordering of G described by (l)-(3).

Theorem 7.2 : Let G be a group such that (i) G contains a

normal subgroup S ordered so as to form a connected po-group, and

(ii) for each coset S' of S either a + =0 + a for every a 6 S'
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ora+0 =0 +a for every a € B' . Then G can be ordered to form a

dualistic poip-group P such that the po-groups tig and S coincide and

P/Sq is totally unordered. All such orderings are effected by

leaving elements not in the same coset of S unordered and ordering

each coset £' f S in either of the follo'-<ring ways: (1) for all

a,b€£', a> b if and only if a - b€0*, or (2) for all a.bCS',

a > b if and only if b - a £ .

The proof that G is a po-set under any one of these orderings

is similar to that in the preceding theorem. V.'e now show that G is

a dualistic poip-group under any one of them.

Suppose a + =0 + a and consider a + s where sCO .

There exists t (G such that a + s = t + a. Then a - s = -t + a

and, since -s^O , -tCO*. It follows that tf 0* and a + 0"*"CZO* + a.

+ * +
Likewise, a + ID + a, so that a + 3 =0 + a.

A similar argument will show that a + =0 + a Lmplies

a + 0* = 0* + a.

*
Suppose a> b according to (1). Then a - b€0 . Clearly

#
afO + b and a + x€0 +(b+x) for any x. This means

(a + x) - (b + x)€0 , which implies that x is either order pre-

serving or order reversing on the right relative to any coset of S.

Case i: Suppose b + =0 + b. Thert a€0 +b = b+0

and X + a€" (x + b) + 0*. If (x + b) + 0* = 0* + (x + b), then

(x - a) - (x + b)€0*. If (x + b) + 0* = O" + (x + b), then

(x + a) - (x > b)€0* and (x + b) - (x + a)€0*.



53

Case jLi: Suppose b + 0* = O"^ + b. Then a€0 +b = b+0'^.

Clearly x + a f (x + b) + O"*" . If (x + b) + O"^ = + (x + b), then

(x + a) - (x + b)eo*. If (x + b) + 0* = 0* + (x * b), then

+ *

(x + a) - (x + b) f whence (x + b) - (x + a) CO .

The proofs of the above cases imply that x is either order

preserving or order reversing on the left relative to any coset of £.

The case in which a > b according to (2) can be proved in a similar

manner. By Theorem 3.22, G is a dualistic poip-group under any one

of the orderings described in (1) and (2).

We now state an important corollary of the above theorems.

Corollary 7.3 : Necessary and sufficient conditions that a

group G can be ordered to form an infinite dimensional poip-group

are: (1) G contains a normal subgroup £ ^ \^J ''^hich can be ordered

so that it forms a weakly connected po-group, such that (ii) for

»
each coset 3*^5, either a + =0 + a for every a<t' or

* +
a + =0 +afor every a C S'

.

The sufficiency of the conditions has been shown. Let P be

an infinite dimensional poip-group. To establish the necessity

we need show only that P satisfies condition ii, since it obviously

satisfies (i).

9
*

Suppose that a CC^ (Cq). If b£a , then b > a, so that

» +
-a + b> and b - a <_ 0. Hence b€a + and b€0 + a, implying

that a CT a + and a C 0^ + a. If c € and d€0 , then c_>

and d<_0, so that a + c> a and d + a> a. Thus a + cf a and

» » « +
d + afa , giving a = a + and a =0 + a.
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Similarly, aecl(CQ), aec^CCg), and afc4(CQ) imply»» « + + +
a + =a =0 +a, a + =a =0 +a, and a + =a =0 +a,

respectively. Since SgCC^tCQ) for some i, the result follows.

The following theorem occurs in (4, p. 214).

Theoreni 7.4 : Any po-group S is determined to within iso-

morphism by the set i? = , since a_> b, a - b€i?, and -b + a€R

are equivalent conditions. liareover, (i) OCR, (ii) if a,b€R, then

a + bCH, (iii) if a,b€"S and a + b = 0, then a = b = 0, (iv) for

all af S, a + R = S + a. Conversely, if S is any group, and R is a

subset of S satisfying {l)-(iv), then S can be ordered to form a

po-group by defining a_> b in S to mean a - b£R.

It is obvious that a po-group S is weakly connected if and

only if, for every pair a,bf S, there exists a sequence

a = x-j^, Xg, . . . , Xj^ = b

of elements of S such that either x^ - x^^+j^^R or x^+j^ - x^fR

(i = 1, 2, . . . , n - 1).

The previous corollary can now be stated in purely algebraic

terms.

Theorem 7.5 ; Necessary and sufficient conditions that a

group G can be ordered to form an infinite dimensional dualistic

poip-group are: (i) G has a normal subgroup S =)< { j which contains

a subset R satisfying (ii) OCR; (iii) if a,bCR, then a + bfR;

(iv) if a,bCR and a + b = 0, then a = b = 0; (v) for all aCS,



55

a + R=R+a; (vi) for every pair a,b€£, there exists a sequence

a = x^, X2» . • • » '^n
~

of elements of £ such that either x. - x.^, CR or x.^-, - x. C R

( i = 1, 2, . . . , n - 1) ; and (vii) for each coset £' i S, either

a + R = R + a for all a€£' or a + R = -R + a for all a C S'

.

Theorems 7,1 and 7.2 also lead to methods for constructing

infinite dimensional poip-groups from a given dualistic poip-group

of finite dimension and a given weakly connected po-group. These

are described below.

In the discussion of the direct sum of two groups A and E,

the symbol (a, B'
)

, where a€A and B' is a subset of B, represents

the set of all pairs (a, b' ) such that b' € B' . The symbol (A', b),

where A' is a subset of A and bCB, is defined accordingly.

Theorem 7.6 : Let P be the direct s\xra G • £ of an upright

dualistic poip-group G and a weakly connected po-group S. Then P

is a dualistic poip-group when it is ordered as follows: (i) if

g-i i ^2' ^^1» ^1^ -^ ^'^2' ^2^ ^^ ^"*^ only if g-i > ^o ^" ^» ^^^^ ^^

g, = ^2 is maximal, (g^, s,) > (g„, s_ ) if and only if s. > s^ in £;

and (iii) if g, = g2 is minimal, (g,, s,) > (gg, Sg) if and only if

E^ < s in £. Furthermore, £ coincides with (0, £), and P/£«

coincides with (G, 0).

The theorem follows directly from Theorem 7.1 once we have

* «
shown that (g, s) + (0, 0) = (0, 0) + (g, s) for every element
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(g, s) ^G •»• S. Here it is understood that (0, £) is ordered such

that (0, s^) > (0, sg) if and only if si> S2, and that (G, 0) is

ordered such that (g^, 0) _> (g2, 0) if and only if g2^_> g2 . But
* * »

(g, s) + (0, 0) = (g, s) + (0, ) = (g, s + ) = {g, + s) =

(0. 0*) + (g, s) = (0, 0)* + (g, s).

Theorem 7.7 : Let P be the direct sum G S of a group G

and a weakly connected po-group S. Then P is a dualistic poip-

group when it is ordered in any one of the ways indicated below:

(i) Qi i ^2 implies (g^, s-j^) and (g2, S2) are not comparable;

(ii) (0, sj^) > (0, S2) if and only if s^ > S2; g ^ implies either

(iii) for all s-j^, S2 <S, (g, s-|_) > (g, Sg) if and only if s-,^ > Sg

or (iv) for all s^, s^ €S, (g, s^) > (g, s^) if and only if

S]^ < S2. i^breover, for any one of these orderings, £q coincides

with (0, t>) and P/£q = (G, 0) is totally unordered.

The proof of the theorem is essentially that of Theorem 7.6.

Example 7.8 : Let G be the poip-group consisting of the

group I2 ordered by setting > 1, and let S be the po-group con-

sisting of the even integers in their natural order. When G + S

is ordered according to Theorem 7.5, we have

. . . > (0, 2) > (0, 0) > (0, -2) > . , . >

(1, -2) > (1, 0) > (1, 2) > . . .

Comparing this example to the poip-group P of Example 2.19

which is not the direct sum of P/Sq and Sq/ even though P/Sg and Sg
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are order isomorphic and group isomorphic (under the same correspond-

ence) to G and S, respectively, shows that the algebraic structure of

a poip-group P is not completely determined by the systems S^ and P/S^.,

In this section we have given necessary and sufficient con-

ditions that a group can be ordered to form an infinite dimensional

poip-group. In addition, we have exhibited the relationships be-

tween the algebraic properties of a dualist ic poip-group P and the

structures of Sq ^"<^ -^/Sg* and have shown that the latter two systems

do not always completely determine P as a group.



VIII. LOIP-GROUPS

The preceding results are much simpler to state if it is

assumed that the poip-gxDup itself is weakly connected.

A weakly connected dualistic poip-group P is a po-group if

and only if P/Sg is of length zero—that is, if and only if P = S .

1 4Otherwise, P is the union of Gq and its coset Cg. Moreover, it can

easily be shown that, under the relativized ordering, ci is a po-

group and Cg is order isomorphic to Cg under the correspondence

carrying a^Cg into -a + r€Cl, where r is the coset representative

of C^. As a consequence of Corollary 5.5, no member of ci is less

than an element of Cg when P is upright. These results are sum-

marized in the following theorem.

Theo rem 8.1 ; If P is an upright dualistic poip-group which

is weakly connected, then (i) P = cj U cl, where (ii) C^ is a normal

subgroup of P with cosets C^ and C^, (iii) under the relativized

4 1ordering Cg is order isomorphic to the po-group Cg, and (iv) no

element of Cg is under an elsnent of C^.

When every pair of elements of P is bounded in some manner,

conditions i-iv are strengthened as shown in the corollaries below.
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Corollary 8.2 : If P is an upright dualistic poip-group

in which every pair of elements has either an upper or a lower bound,

it satisfies conditions i-iii, and (iv)' every element of Cq is

4
greater than every element of Gg.

Clearly P satisfies conditions i-iv. Now let a and b be

members of ci and Cg, respectively, and suppose that they have an

upper bound c. By condition iv, c^C^, so that cfC^ and cC^^ . How-

ever, c > b and S^ = 5^ > Sj^ whence a > b. Similarly, if a and b

have a lower bound, a > b.

Corollary 8.3 : If P is an upright dualistic poip-group

which is either up-directed or down-directed, it satisfies (i),

(ii), (iii), (iv)', and (v) C^ and C^ are strong components of P.

Corollary 8.4 : If ? is an upright loip-group, it satisfies

(i), (ii), (iv)', (v), and (iii)' under the relativized ordering C^

is an 1-group and Cq is order isomorphic to it.

By condition iii, Cg is a po-group under the relativized

ordering. If a and b are elements of Cq, by ( iv) a U bCCg. Now

4 4
assume a fl b^Cg, so that every member of Cq must be less than

a n b, in which case aH b is a maximal element of C^. Condition iii

thus implies that Cq has a maximal element. However, the only

1-group with a maximal element is the group of order one. Thus

aDbCcJ, and Ci is a loip-group.
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As a result of this corollary many of the results concerning

1-groups are easily extended to loip-groups. We note several

examples. In an l-group L, x + (a U b) = (x + a) U (x + b) for all

a,b,x ^L. In a loip-group P, this becomes x + (a U b) =

(x + a) U {x + b) if x€cj and x + (aU b) = (x + a) (x + b) if

xCCg. Every l-group and every loip-group is a distributive lattice.

In (4, p. 222) it is shown that the congruence relations on an

l-group L are the partitions of L into the cosets of its different 1-

ideals. On the other hand, the congruence relations on a loip-group P

are the partitions of P into the cosets of its k-ideals, where the

k-ideals are P and its normal subgroups which are 1- ideals of Cg.

These results are all easily established.



IX. sm^^RY

The order structure of partially ordered ideal preserving

groups was deteimined in terms of partially ordered groups; many

results concerning these latter systems can easily be extended to

the more general partially ordered ideal preserving groups. Nec-

essary and sufficient conditions that a group can be ordered to

form a non-trivial partially ordered ideal preserving group were

obtained. The principal concepts employed in this dissertation are

the equivalence relations called weak and strong connectivity.

The investigation of partially ordered ideal preserving

rings and fields is suggested as a problem for further research.
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